Chart of Nuclides and the Production of Elements With Atomic Number Greater Than Iron's

At this point, we know how elements smaller than iron are produced in the core of a healthy star. Specifically:

Small elements with relatively large mass-per-nucleon counts are forced together to make larger elements that have smaller massper-nucleon counts.

In the process, the "lost" mass is turned into pure energy via $E = mc^2$.

The cut-off for this process is supposed to be iron. To fuse "small" elements into LARGER THAN iron elements would require a massper-nucleon count to go UP via $E = mc^2$. For this to happen, energy would *not* be given off--it would have to be *taken in*.

The temptation is to assume that the process to make elements at the "elements larger than iron" end of the spectrum was just like the process to make elements at the "elements smaller than iron" end, the only difference being that at the higher end you'd need something like a supernova to provide the needed energy to complete the fusion process.

It turns out that that is not how larger elements are produced during supernovas.

Why not? The amount of pressure required to force just *two* protons together to get fusion is enormous (remember, 10,000,000 degrees Kelvin and a billion atmospheres of pressure). Even with quantum mechanical tunneling active, the energies required for a proton to overcome the electrostatic repulsion produced by a proton-rich nucleus of, say, zinc, is considerably greater than the particle energies generated during supernovas. By extension, the electrostatic repulsion generated in an attempt to push two proton-rich zinc nuclei together via fusion is even less likely.

So how are the larger elements created?

Note 1: Supernovas produce enormous numbers of free neutrons. Being without charge, neutrons can effortlessly couple with already existing atoms experiencing no repulsion in the process. Note 2: Although they are primarily made up of hydrogen and helium, all second and third generation stars have within them the same elements we find on earth.

Sooo, when a supernova blows, a lot of the small, medium and large elements in the star become neutron rich (that is, they have way more neutrons than they' d normally have). As a consequence, each element will end up with numerous radioactive isotopes--versions of themselves with more neutrons than are needed for stability.

Sooner or later, the unstable ones radioactively decay via beta emission (remember, beta emission is produced when a neutron decays into a proton with an electron being ejected as a high energy particle. So let's follow one such particle. When the beta decay occurs, the element moves one element up on the Periodic Table (that is, it now has one more proton in its nucleus). It is now a new element with way too many neutrons still in its nucleus to be stable. Sooner or later, one of the extra neutrons will beta decay and the element becomes the next higher element atomic number wise (again, it now has one more proton than it had before). If the new element is still unstable, sooner or later the new element will have another of its extra neutrons beta decay making the particle into yet the next higher element. This process will go on until the element produced is stable. At that point, the process stops.

This is called the "r-process" (the "r" stands for "rapid"--supernovas happen in about a second). This is the mechanism that creates "larger" element during a supernova.

There is another similar process called the "s-process" (the "s" stands for "slow") in which a free neutron can attach itself to an element during the course of a star's life (that is, way before the star supernovas), then beta decays making that element into the next element up. This mechanism occurs very slowly in stars taking, maybe, several million years to occur to a particular atom (if at all).

The presence of this mechanism produces, though, an interesting phenomenon. It turns out that there are elements that were generated in first generation stars that were LARGER than iron (atomic number 26) and were not produced as a consequence of the star's death. Those elements are strontium (atomic number 38), yttrium (atomic number 39), zirconium (atomic number 40), barium (atomic number 56), lanthanum (atomic number 57), and europium (atomic number 63).

From Google Pictures, the Periodic Table shows the elements greater than iron that are produced slowly in stars.

H		ļ			: Tal	ole d	of the Elements										He
Li	Be		 hydrogen alkali metals alkali earth metals 					 poor metals nonmetals noble gases 					C	N	0	F	¹⁰ Ne
Na	12 Mg	-	alkali earth metals transition metals					re ear	th met	als		AI	14 Si	Ρ	5 S	CI	18 Ar
К ¹⁹	Са	SC	c Ti V Cr Mn				Fe	C0	28 Ni	Cu	Zn Zn	Ga ³¹	Ge ³²	As	Se	Br	36 Kr
Rb	Sr	³⁹ Y	³⁹ ⁴⁰ ⁴¹ ⁴² ⁴³ Zr Nb Mo Tc					⁴⁵ Rh	Pd	Ag	48 Cd	In	Sn	Sb	Te Te	53 	Xe
Cs	Ba	57 La						⁷⁷ Ir	Pt	79 Au	Hg	⁸¹ Ti	Pb	83 Bi	⁸⁴ Po	At 85	86 Rn
Fr	87 88 89 104 105 106 107 Fr Ra Ac Unq Unp Unh Uns I							Une	Unn								
	58 59 60 61 Ce Pr Nd Pm S							63 Eu	64 Gd	Tb	66 Dv		68 Er		Yb	71 Lu	

								-					71 Lu
90 Th	91 Pa	92 U	93 Np	94 Pu	Am	96 Cm	97 Bk	Cf	99 Es	100 Fm	101 Md	102 No	103 Lr

Here is an example of the process. Below is a chart of nuclides with the number of neutrons increasing by one as you proceed right.

91	Pa215 0.0145	Pa216 0.105s	Pa217 0.0034≤	Pa218 0.0001135	Pa219 5.3e-08s	Pa220 7.8e-07s	Pa221 5.9e-06s	Pa222 0.00335	Pa223 0.00495	Pa224 ø.85≤	Pa225 1.7≤	Pa226	Pa227	Pa228	Pa229
90	Th214 0.15	Th215	Th216 0.0275	Th217 0.0002375	Th218 1.09e-07s	Th219 1.05e-06s	Th220 9.7e-06s	Th221 0.001685	Th222 0.0025	Th223 0.65	Th224 0.8125	Th225 8.72m	Th226	Th227	Th228
89	Ac213 0.7315	Ac214 8.25	Ac215 0.175	Ac216	Ac217	Ac218 1.06e-06s	Ac219 1.18e-05s	Ac220 0.02615	Ac221 0.052s	Ac222	Ac223	Ac224	Ac225	Ac226	AC227
88	Ra212	Ra213	Ra214 2.465	Ra215 0.001675	Ra216 1.82e-07s	Ra217 1.7e-06s	Ra218 1.56e-05s	Ra219 0.015	Ra220 0.0185	Ra221 285	Ra222 38≤	Ra223	Ra224	Ra225	Ra226
87	Fr211 3.1m	Fr212	Fr213 34.65	Fr214 0.005s	Fr215 8.6e-08s	Fr216 7e-07s	Fr217 1.6e-05s	Fr218	Fr219 0.025	Fr220	Fr221	Fr222	Fr223	Fr224 3.3m	Fr225
86	Rn210	Rn211	Rn212	Rn213 0.01955	Rn214 2.7e-07s	Rn215 2.3e-06s	Rn216 4.5e-05s	Rn217 0.00054s	Rn218 0.035s	Rn219 3.965	Rn220	Rn221	Rn222	Rn223	Rn224
85	At 209	At210	At211	At212 0.314≤	At213 1.25e-07s	At214	At215 0.00015	At216 0.0003≤	At217 0.03235	At218	At219	At220	At221	At222	At223
84	Po208	Po209	Po210	Po211	Po212	Po213	Po214 0.0001645	Po215	Po216 0.1455	Po217	Po218 3.1m	Po219 30.5m	Po220 36.3m	Po221 6.18m	Po222 9.3m
83	Bi207	Bi208	Bi209	Bi210 3.04e+06y	Bi211	Bi212	Bi213	Bi214	Bi215	Bi216	Bi217	Bi218 33≤	Bi219 9.875	Bi220	Bi221
82	Pb206	Pb207	Pb208	Pb209 3.253h	Pb210	Pb211 36.1m	Pb212	Pb213	Pb214 26.8m	Pb215 365	Pb216 38.7≲	Pb217 28.7≤	Pb218 14.5s	Pb219	Pb220
81	T1205	T1206 4.199m	T1207	T1208 3.053m	T1209 2.161m	T1210	T1211 4.865	T1212 4.185	T1213 2.09s	T1214	T1215	T1216 0.8115	T1217 0.635	T1218 0.479s	T1219 0.445
80	Hg204 6.87	Hg205	Hg206 8.15m	Hg207 2.9m	Hg208	Hg209 35s	Hg210 1.04s	Hg211 1.13≤	Hg212 0.528s	Hg213 0.524s	Hg214 0.3775	Hg215 0.321s	Hg216 0.226s		
79	Au203	Au204	Au205	Au206	Au207 1.3s	Au208	Au209 0.7465	Au210 0.9175	Au211 0.507s	Au212 0.411s	Au213 0.325	Au214 0.2675	Au215 0.1965		
78	Pt202	Pt203 41.15	Pt204 6.75≤	Pt205 0.674s	Pt206 0.465s	Pt207 0.562s	Pt208 0.3025	Pt209 0.3795	Pt210 0.179s	Pt211 0.177s				-	
77	Ir201 18.5s	Ir202 8.55	Ir203	Ir204 0.4065	Ir205 0.296s	Ir206 0.321s	Ir207 0.1875	Ir208 0.2085	Ir209 0.1245		-				
76	0s200 16s	0s201 9.44s	0s202	0s203 0.316s	0s204 0.202s	0s205 0.243s				_					
75	Re199 1.945	Re200	Re201 ø.535s	Re202	Re203 0.0905s	Re204 ø.114s									
							•								8.)

Let's track a single iridium atom with 208 nuclides.

Pb 207	Pb 208	Pb 209	Pb 210	Pb 211	Pb 212	Pb 213	Pb 214	Pb 215
	5 3 10 ⁹							
	5.2x10 ⁹ y							
Ti 206	Ti 207	Ti 208	Ti 209	Ti 210	Ti 21	Ti 212	Ti 213	Ti 214
		3.053 m						
Hg 205	Hg 206	Hg 207	Hg 208	Hg 209	Hg 210	Hg 211	Hg 212	Hg 213
			41 m					
Au 204	Au 205	Au 206	Au 207	Au 208	Au 209	Au 210	Au 211	Au 212
				1.29 s				
Pt 203	Pt 204	Pt 205	Pt 206	Pt 207	Pt 208	Pt 209	Pt 210	Pt 211
					.302 s			
Ir 202	Ir 203	Ir 204	Ir 205	Ir 206	Ir 207	Ir 208	Ir 209	Ir 210
						.208 s		
						.2003		
							Ī	

After .208 seconds, the iridium will beta decay into platnum 208 with one less neutron, jumping as shown on the neutron chart below.

Pb 207	Pb 208	Pb 209	Pb 210	Pb 211	Pb 212	Pb 213	Pb 214	Pb 215
	5.2x10 ⁹ y							
Ti 206	Ti 207	Ti 208	Ti 209	Ti 210	Ti 21	Ti 212	Ti 213	Ti 214
		3.053 m						
Hg 205	Hg 206	Hg 207	Hg 208	Hg 209	Hg 210	Hg 211	Hg 212	Hg 213
			41 m					
Au 204	Au 205	Au 206	Au 207	Au 208	Au 209	Au 210	Au 211	Au 212
				1.29 s				
Pt 203	Pt 204	Pt 205	Pt 206	Pt 207	Pt 208	Pt 209	Pt 210	Pt 211
					.302 s		<u>_</u>	
Ir 202	Ir 203	Ir 204	Ir 205	Ir 206	Ir 207		1 209	Ir 210
						Ir 208 .208 s		

After .302 seconds, the platnum will beta decay into gold 208 with one less neutron, jumping as shown on the neutron chart below.

Pb 207	Pb 208	Pb 209	Pb 210	Pb 211	Pb 212	Pb 213	Pb 214	Pb 215
10207		10207	10210	10211	10212	10213	10214	10213
	5.2x10 ⁹ y							
Ti 206	Ti 207	Ti 208	Ti 209	Ti 210	Ti 21	Ti 212	Ti 213	Ti 214
		3.053 m						
Hg 205	Hg 206	Hg 207	Hg 208	Hg 209	Hg 210	Hg 211	Hg 212	Hg 213
			41 m					
Au 204	Au 205	Au 206	Au 207	Au 208	Au 209	Au 210	Au 211	Au 212
				1.29 s		$\mathbf{n}^{e^{-}}$		
Pt 203	Pt 204	Pt 205	Pt 206	Pt 207	\rightarrow	Pt 209	Pt 210	Pt 211
					Pt 208 .302 s			
Ir 202	Ir 203	Ir 204	Ir 205	Ir 206	Ir 207	Ir 208	Ir 209	Ir 210
						.208 s		

After 1.29 seconds, the gold will beta decay into mercury 208 with one less neutron, jumping as shown on the neutron chart below.

Pb 207	Pb 208	Pb 209	Pb 210	Pb 211	Pb 212	Pb 213	Pb 214	Pb 215
	5.2x10 ⁹ y			10211	10212	10215	10211	10215
Ti 206	Ti 207	Ti 208	Ti 209	Ti 210	Ti 21	Ti 212	Ti 213	Ti 214
		3.053 m						
Hg 205	Hg 206	Hg 207	Hg 208	Hg 209	Hg 210	Hg 211	Hg 212	Hg 213
			41 m		π^{e^-}			
Au 204	Au 205	Au 206	Au 207	Au 208	Au 209	Au 210	Au 211	Au 212
				1.29 s				
Pt 203	Pt 204	Pt 205	Pt 206	Pt 207	Pt 208	Pt 209	Pt 210	Pt 211
					.302 s			
Ir 202	Ir 203	Ir 204	Ir 205	Ir 206	Ir 207	Ir 208	Ir 209	Ir 210
						.208 s		

After 41 minutes, the mercury will beta decay into titanium 208 with one less neutron, jumping as shown on the neutron chart below.

Pb 207	Pb 208	Pb 209	Pb 210	Pb 211	Pb 212	Pb 213	Pb 214	Pb 215
	5.2x10 ⁹ y							
Ti 206	Ti 207	Ti 208	Ti 209	Ti 210	Ti 21	Ti 212	Ti 213	Ti 214
		3.053 m		e				
Hg 205	Hg 206	Hg 207		lig 209	Hg 210	Hg 211	Hg 212	Hg 213
			Hg 208 41 m					
Au 204	Au 205	Au 206	Au 207	Au 208	Au 209	Au 210	Au 211	Au 212
				1.29 s				
Pt 203	Pt 204	Pt 205	Pt 206	Pt 207	Pt 208	Pt 209	Pt 210	Pt 211
					.302 s			
Ir 202	Ir 203	Ir 204	Ir 205	Ir 206	Ir 207	Ir 208	Ir 209	Ir 210
						.208 s		

After 3.053 minutes, the titanium will beta decay into lead 208 with one less neutron, jumping as shown on the neutron chart below. As lead 208 has a half life of 52,000,000 years, this is a stable atom and we've just created a "bigger" atom from a "smaller" atom without using fusion.

Pb 207	Pb 208 5.2x10 ⁹ y	РЬ 209	Pb 210	РЬ 211	РЬ 212	РЬ 213	Pb 214	Pb 215
Ti 206	Ti 207	Ti 208 3.053 m	209	Ti 210	Ti 21	Ti 212	Ti 213	Ti 214
Hg 205	Hg 206	Hg 207	Hg 208	Hg 209	Hg 210	Hg 211	Hg 212	Hg 213
Au 204	Au 205	Au 206	Au 207	Au 208	Au 209	Au 210	Au 211	Au 212
Pt 203	Pt 204	Pt 205	Pt 206	Pt 207	Pt 208	Pt 209	Pt 210	Pt 211
Ir 202	Ir 203	Ir 204	Ir 205	Ir 206	Ir 207	Ir 208	Ir 209	Ir 210