Chart of Nuclides and the Production of
Elements With Atomic Number Greater Than
Iron’ s

At this point, we know how elements smaller than iron are produced in
the core of a healthy star. Specifically:

Small elements with relatively large mass-per-nucleon counts are
forced together to make larger elements that have smaller mass-
per-nucleon counts.

In the process, the “lost” mass is turned into pure energy via E = mc”




The cut-off for this process is supposed to be iron. To fuse “small”
elements into LARGER THAN iron elements would require a mass-
per-nucleon count to go UP via E = mc® For this to happen, energy
would not be given off--it would have to be taken in.

The temptation is to assume that the process to make elements at
the “elements larger than iron” end of the spectrum was just like the
process to make elements at the “elements smaller than iron” end,
the only difference being that at the higher end you’ d need
something like a supernova to provide the needed energy to
complete the fusion process.

It turns out that that is not how larger elements are produced during
supernovas.




Why not? The amount of pressure required to force just two protons
together to get fusion is enormous (remember, 10,000,000 degrees
Kelvin and a billion atmospheres of pressure). Even with quantum
mechanical tunneling active, the energies required for a proton to
overcome the electrostatic repulsion produced by a proton-rich
nucleus of, say, zinc, is considerably greater than the particle
energies generated during supernovas. By extension, the
electrostatic repulsion generated in an attempt to push two proton-
rich zinc nuclei together via fusion is even less likely.

So how are the larger elements created?

Note 1: Supernovas produce enormous numbers of free neutrons.
Being without charge, neutrons can effortlessly couple with already
existing atoms experiencing no repulsion in the process.




Note 2: Although they are primarily made up of hydrogen and helium,
all second and third generation stars have within them the same
elements we find on earth.

Soo0, when a supernova blows, a lot of the small, medium and large
elements in the star become neutron rich (that is, they have way more
neutrons than they’ d normally have). As a consequence, each
element will end up with numerous radioactive isotopes--versions of
themselves with more neutrons than are needed for stability.

Sooner or later, the unstable ones radioactively decay via beta
emission (remember, beta emission is produced when a neutron
decays into a proton with an electron being ejected as a high energy
particle.




So let’ s follow one such particle. When the beta decay occurs, the
element moves one element up on the Periodic Table (that is, it now
has one more proton in its nucleus). It is now a new element with way
too many neutrons still in its nucleus to be stable. Sooner or later, one
of the extra neutrons will beta decay and the element becomes the
next higher element atomic number wise (again, it now has one more
proton than it had before). If the new element is still unstable, sooner
or later the new element will have another of its extra neutrons beta
decay making the particle into yet the next higher element. This
process will go on until the element produced is stable. At that point,
the process stops.

This is called the “r-process” (the “r” stands for “rapid”--supernovas
happen in about a second). This is the mechanism that creates
“larger” element during a supernova.
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There is another similar process called the “s-process” (the “s
stands for “slow”) in which a free neutron can attach itself to an
element during the course of a star’ s life (that is, way before the star
supernovas), then beta decays making that element into the next
element up. This mechanism occurs very slowly in stars taking,
maybe, several million years to occur to a particular atom (if at all).

The presence of this mechanism produces, though, an interesting
phenomenon. It turns out that there are elements that were generated
in first generation stars that were LARGER than iron (atomic number
26) and were not produced as a consequence of the star’ s death.
Those elements are strontium (atomic number 38), yttrium (atomic
number 39), zirconium (atomic number 40), barium (atomic number
96), lanthanum (atomic number 57), and europium (atomic number
63).




From Google Pictures, the Periodic Table shows the elements greater than

iron that are produced slowly in stars.

Periodic Table of the Elements
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Here is an example of the process. Below is a chart of nuclides with the
number of neutrons increasing by one as you proceed right.
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Let’ s track a single iridium atom with 208 nuclides.
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After .208 seconds, the iridium will beta decay into plathum 208 with one
less neutron, jumping as shown on the neutron chart below.
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After .302 seconds, the platnum will beta decay into gold 208 with one less

neutron, jumping as shown on the neutron chart below.
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After 1.29 seconds, the gold will beta decay into mercury 208 with one less

neutron, jumping as shown on the neutron chart below.
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After 41 minutes, the mercury will beta decay into titanium 208 with one
less neutron, jumping as shown on the neutron chart below.
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After 3.053 minutes, the titanium will beta decay into lead 208 with one less
neutron, jumping as shown on the neutron chart below. As lead 208 has a
half life of 52,000,000 years, this is a stable atom and we’ ve just created a

“bigger” atom from a “smaller” atom without using fusion.
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